NIEHS SBIR/STTR Grants Supporting NICEATM

Dan Shaughnessy, Lingamanaidu Ravichandran

NIEHS Division of Extramural Research and Training

Overview

- Background
- Current Grants
- Current solicitations
 - Phase IIB for Approaches to Reduce Animal Use in Toxicity Testing (U44)
 - Re-release of Novel Assays for Screening the Effects of Chemical Toxicants on Cell Differentiation (SBIR R44 – Phase II only)
 - Organotypic Culture Models developed from Experimental Animals for Chemical Toxicity Screening (R43/R44)

SBIR = **S**mall **B**usiness **I**nnovation **R**esearch

- For Profit
- <500 employees
- US owned and operated
- 11 Federal Agencies w/ extramural budgets >\$100M

FY	SBIR Required Allocations	NIEHS Budget	
2015	2.90%	~\$12.6M	
2016	3.00%	~\$13.6M	
2017	3.20%	~\$15.1M	
2018-2022	3.20%		

2017 - SRP ~\$1.7M and WTP ~\$740k

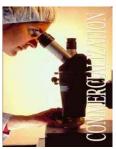
STTR = **S**mall Business **T**echnology **T**ransfe**r**

- Minimum For Profit (40%) + Nonprofit (30%)
- <500 employees at For Profit
- US owned and operated
- 5 Federal Agencies w/ extramural budgets >\$1B

FY	STTR Required Allocations	NIEHS Budget
2015	0.40%	~\$2.1M
2016	0.45%	~\$2.4M
2017	0.45%	~\$2.4M
2018-2022	0.45%	

PHASE I Feasibility Study (SBIR R43, STTR R41)

- Budget Guide: Up to \$150K Total Costs
- Project Period: 6 months (SBIR); 1 year (STTR)



PHASE II Full Research/R&D (SBIR R44, STTR R42)

Up to \$1M Total Costs over 2 years

PHASE IIB Competing Renewal/R&D

- Clinical R&D; Complex Instrumentation/Tools to FDA
- Many, but not all, ICs participate
- Varies ~\$1M/year for 3 years

PHASE III Commercialization Stage

- NIH, generally, not the "customer"
- Consider partnering and exit strategy early

NIEHS SBIR/STTR Programs

Emphasis on development of novel approaches using state-of-the-art technologies for environmental health sciences.

Exposure Assessment
Tools

Integrated systems or models combining sensor, biomonitoring technology, and existing databases

Nano Env. Health/Safety

Sensors, biomonitoring technology, and *in vitro* assays

Toxicity Screening,
Testing, and Modeling

Improved or expanded methods with multiple endpoints and genetic diversity that reduce animal use

Biomarkers

Oxidative stress, inflammation, DNA damage, immune function, mitochondrial function, and epigenetic regulation

Education and Outreach

Tools that improve environmental health literacy, promote understanding of EHS, and support citizen science endeavors

Superfund Research Program

Detection and/or remediation technologies

Unsolicited SBIR/STTR Grants

Souza, Glauco

Yin, Lei

R44 ES024644--02

R43 ES027374-01

Grant Number	PI	Institution	Title	Technology Category
R43 ES027711-01	Clewell, Rebecca	Scitovation, LLC	Development of high sensitivity in vitro assay to detect DNA double strand breaks	Cell-based Toxicity Assay
R43 ES027375-01	Mcclelland, Randall	Scikon Innovation, Inc.	Microfluidic Biotool to Accurately Model Corrosive Chemical Exposures for Human	Cell-based Toxicity Assay
R43 ES027703-01	Herron, Todd	Cartox, LLC	Functionally Mature Human Stem Cell Derived Cardiac Monolayers for Cardiotoxicity Testing	Cell-based Toxicity Assay
R43 ES028654-01	Choi, Ted	Predictive Biology	Novel Single Cell Assay to Identify Genes Underlying Developmental Neurotoxicity	Cell-based Toxicity Assay
			Nice Astronol Test Marker J. T. Datas at The	

Non-Animal Test Method To Determine The **Cell-based Toxicity Assay** Lebrun, Stewart Lebrun Labs, LLC Ocular Safety Of Consumer Products and R43 ES025501-01 Chemicals

Integrated In Vitro and Alternative Ocular **Cell-based Toxicity Assay** MB Research R44 ES024052-02 DeGeorge, George Laboratories (IIVAO) Irritation Testing Strategy

Nano3DBiosciences, Inc

Reprotox Biotech

Development of high-throughput cardiotoxicity and hepatotoxicity assays

with magnetic 3D bioprinting

Innovative three-dimensional testicular Coculture (Mini-Testis) model for reproductive

toxicity testing: a pathway based High

throughput (HT) and High Content Analysis (HCA)

Organotypic model for Tox

Testing

Organotypic model for Tox

Testing

NIEHS SBIR/STTR Solicitations

- RFA-ES-15-016: NIEHS SBIR Phase IIB Awards for Validation and Commercialization of Approaches to Reduce Animal Use in Toxicology Testing (U44)
- RFA-ES-17-007: Novel Assays for Screening the Effects of Chemical Toxicants on Cell Differentiation (SBIR R44)
- RFA-ES-17-008: Organotypic Culture Models developed from Experimental Animals for Chemical Toxicity Screening

NIEHS SBIR Phase IIB Awards: Validation and Commercialization of Approaches to Reduce Animal Use in Toxicology Testing (U44)

- Supports efforts to accelerate acceptance & commercialization of alternative methods & approaches
- Grantees work through SC and ICCVAM/NICEATM to address validation needed for acceptance by U.S. federal agencies

RFA-ES-15-016

Applications due: Nov 13, 2017
Review: March 2018
(Dr. Leroy Worth)

- Approaches: In vitro assays, QSAR, and computational methods to predict toxicity
- Priority areas: Ocular toxicity, developmental toxicity, carcinogenicity, and acute toxicity testing
- **Example:** Validation of an In Vitro Human Airway Model for Regulatory Toxicity Testing (2U44ES014312-04 Patrick Hayden, MatTek Corp.)

Validation of an In Vitro Human Airway Model for Regulatory Toxicity Testing

- Formal validation of the EpiAirway™ in vitro human bronchial tissue model for predicting toxicity of inhaled chemicals
- Expanded of test chemicals to verify the accuracy and relevance of the final prediction model
- Multi-laboratory GLP ring trial to establish the transferability, reproducibility, accuracy and relevance of the tissue model
- Final report and submission of test data to US federal regulatory agencies and OECD

Novel Assays for Screening the Effects of Chemical Toxicants on Cell Differentiation (SBIR R44 – Phase II only)

Approaches can include:

- Assays evaluating alteration of ES/iPS cell differentiation
- Human iPS or mouse ES/iPS to incorporate genetic variation into toxicity screening
- Engineered stem cell lines to simulate common genetic variants in human disease
 (Parkinson's Disease, autism, breast cancer, etc.)
- High-content screening or 'omics-based assays for toxicant-induced effects using differentiated cell types derived from pluripotent or multi-potent cells

RFA-ES-17-007

Applications due: Oct 4, 2017

Review: Dec 2017 (Dr. Leroy Worth)

Organotypic Culture Models developed from Experimental Animals for Chemical Toxicity Screening (R43/R44)

- Develop 3D or organotypic models using cells derived from experimental animals typically used in toxicology testing
- Derived from ES or pluripotent cells, or single of multiple cell types to replicate target organ function with respect to toxicity
- Allows comparisons between in vivo and in vitro test results
- Concordance between in vivo and in vitro test results will improve confidence in the utility of the in vitro models (both animal and human)
- In vitro models will help to reduce the need for animals in tox testing

RFA-ES-17-008

Applications due: Jan. 12, 2018

Review: June 2018

(Dr. Leroy Worth)

Questions?